counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in OFC 2018 (16)

Sunday
Oct142018

Finisar demonstrates its first silicon photonics transceiver  

  • Finisar unveiled its first silicon photonics-based product, a 400-gigabit QSFP-DD DR4 module, at the recent ECOC event.
  • The company also showed transceiver technology that simplifies the setting up of dense wavelength-division multiplexing (DWDM) links.
  • Two 200-gigabit QSFP56 client-side modules and an extended reach 30km 400-gigabit eLR8 were also demonstrated by Finisar. 
  • A 64-gigabaud integrated tunable transmitter and receiver assembly (ITTRA) was used to send a 400-gigabit coherent wavelength.  

Finisar is bringing to market its first silicon photonics-based optical module. 

Christian UrricarietThe 400GBASE-DR4 is an IEEE 500m-reach 400-gigabit parallel fibre standard based on four fibres, each carrying a 100-gigabit 4-level pulse amplitude modulation (PAM-4) signal. Finisar’s DR4 is integrated into a QSFP-DD module. 

“The DR4 is the 400-gigabit interface that most of the hyperscale cloud players are interested in first,” says Christian Urricariet, senior director of global marketing at Finisar.

The company demonstrated the module at the recent European Conference on Optical Communication (ECOC), held in Rome.  

Click to read more ...

Wednesday
Sep262018

Intel targets 5G fronthaul with a 100G CWDM4 module  

  • Intel announced at ECOC that it is sampling a 10km extended temperature range 100-gigabit CWDM4 optical module for 5G fronthaul. 
  • Another announced pluggable module pursued by Intel is the 400 Gigabit Ethernet (GbE) parallel fibre DR4 standard.
  • Intel, a backer of the CWDM8 MSA, says the 8-wavelength 400-gigabit module will not be in production before 2020.

Intel has expanded its portfolio of silicon photonics-based optical modules to address 5G mobile fronthaul and 400GbE.

Robert BlumAt the European Conference on Optical Communication (ECOC) being held in Rome this week, Intel announced it is sampling a 100-gigabit CWDM4 module in a QSFP form factor for wireless fronthaul applications.

The CWDM4 module has an extended temperature range, -20°C to +85°C, and a 10km reach.

“The final samples are available now and [the product] will go into production in the first quarter of 2019,” says Robert Blum, director of strategic marketing and business development at Intel’s silicon photonics product division.

Click to read more ...

Monday
Sep242018

NeoPhotonics ups the baud rate for line and client optics  

  • Neophotonics’ 64 gigabaud optical components are now being designed into optical transmission systems. The components enable up to 600 gigabits per wavelength and 1.2 terabits using a dual-wavelength transponder.    
  • The company’s high-end transponder that uses Ciena’s WaveLogic Ai coherent digital signal processor (DSP) is now shipping.  
  • NeoPhotonic is also showcasing its 53 gigabaud components for client-side pluggable optics capable of 100-gigabit wavelengths at the current European Conference on Optical Communication (ECOC) show being held in Rome.  

NeoPhotonics says its family of 64 gigabaud (Gbaud) optical components are being incorporated within next-generation optical transmission platforms. 

Ferris LipscombThe 64Gbaud components include a micro intradyne coherent receiver (micro-ICR), a micro integrable tunable laser assembly (micro-ITLA) and a coherent driver modulator (CDM).

The micro-ICR and micro-ITLA are the Optical Internetworking Forum’s (OIF) specification, while the CDM is currently being specified.   

“Three major customers have selected to use all three [64Gbaud components] and several others are using a subset of those,” says Ferris Lipscomb, vice president of marketing at NeoPhotonics.

Click to read more ...

Tuesday
Jul242018

Xilinx delivers 58G serdes and showcases a 112G test chip

In the first of two articles, electrical input-output developments are discussed, focussing on Xilinx’s serialiser-deserialiser (serdes) work for its programmable logic chips. In Part 2, the IMEC nanoelectronics R&D centre’s latest silicon photonics work to enable optical I/O for chips is detailed.

Part 1: Electrical I/O

Processor and memory chips continue to scale exponentially. The electrical input-output (I/O) used to move data on and off such chips scales less well. Electrical interfaces are now transitioning from 28 gigabit-per-second (Gbps) to 56Gbps and work is already advanced to double the rate again to 112Gbps. But the question as to when electrical interfaces will reach their practical limit continues to be debated. 

Gilles Garcia“Some two years ago, talking to the serdes community, they were seeing 100 gigabits as the first potential wall,” says Gilles Garcia, communications business lead at Xilinx. “In two years, a lot of work has happened and we can now demonstrate 112 gigabits [electrical interfaces].”

The challenge of moving to higher-speed serdes is that the reach shortens with each doubling of speed. The need to move greater amounts of data on- and off-chip also has power-consumption implications, especially with the extra circuitry needed when moving from non-return-to-zero signalling to the more complex 4-level pulse-amplitude modulation (PAM-4) scheme.  

PAM-4 is already used for 56-gigabit electrical I/O for such applications as 400 Gigabit Ethernet optical modules and by the leading edge 12.8-terabit capacity switch chips. Having 112-gigabit serdes at least ensures one further generation of switch chips and optical modules but what comes after that is still to be determined. Even if more can be squeezed out of copper, the trace lengths will shorten and optics will continue to get closer to the chip. 

Click to read more ...

Wednesday
Jul182018

Optical module trends: A conversation with Finisar  

Finisar demonstrated recently a raft of new products that address emerging optical module developments. These include: 

  • A compact coherent integrated tunable transmitter and receiver assembly 
  • 400GBASE-FR8 and -LR8 QSFP-DD pluggable modules and a QSFP-DD active optical cable 
  • A QSFP28 100-gigabit serial FR interface 
  • 50-gigabit SFP56 SR and LR modules

Rafik Ward, Finisar’s general manager of optical interconnects, explains the technologies and their uses.

Click to read more ...

Tuesday
Jun052018

400ZR will signal coherent’s entry into the datacom world  

  • 400ZR will have a reach of 80km and a target power consumption of 15W 
  • The coherent interface will be available as a pluggable module that will link data-centre switches across sites    
  • Huawei expects first modules to be available in the first half of 2020
  • At OFC, Huawei announced its own 250km 400-gigabit single-wavelength coherent solution that is already being shipped to customers

Coherent optics will finally cross over into datacom with the advent of the 400ZR interface.  So claims Maxim Kuschnerov, senior R&D manager at Huawei.

Maxim Kuschnerov400ZR is an interoperable 400-gigabit single-wavelength coherent interface being developed by the Optical Internetworking Forum (OIF) {add link}.

The 400ZR will be available as a pluggable module and as on-board optics using the COBO specification {add link}. The IEEE is also considering a proposal to adopt the 400ZR specification, initially for the data-centre interconnect market. “Once coherent moves from the OIF to the IEEE, its impact in the marketplace will be multiplied,” says Kuschnerov. 

But developing a 400ZR pluggable represents a significant challenge for the industry. “Such interoperable coherent 16-QAM modules won’t happen easily,” says Kuschnerov. “Just look at the efforts of the industry to have PAM-4 interoperability, it is a tremendous step up from on-off keying.” 

Despite the challenges, 400ZR products are expected by the first half of 2020.

Click to read more ...

Saturday
Apr212018

Ciena goes stackable with 8180 'white box' and 6500 RLS

Ciena has unveiled two products - the 8180 coherent networking platform and the 6500 reconfigurable line system - that target cable and cellular operators that are deploying fibre deep in their networks, closer to subscribers.

The 6500 line system is also aimed at the data centre interconnect market given how the webscale players are experiencing a near-doubling of traffic each year.

Source: Ciena

The cable industry is moving to a distributed access architecture (DAA) that brings fibre closer to the network’s edge and splits part of the functionality of the cable modem termination system (CMTS) - the remote PHY - closer to end users. The cable operators are deploying fibre to boost the data rates they can offer homes and businesses.

Click to read more ...