counter for iweb
Website
Silicon Photonics

Published book, click here

Entries in Peter Winzer (5)

Friday
Mar032023

Nubis' bandwidth-packed tiny optical engine

  • Nubis Communications has revealed its ambitions to be an optical input-output (I/O) solutions provider
  • Its tiny 1.6-terabit optical engine measures 5mm x 7.5mm
  • The optical engine has a power consumption of below 4 picojoule/bit (pJ/b) and a bandwidth density of 0.5 terabits per millimetre.
  • “Future systems will be I/O with an ASIC dangling off it.”

Nubis Communications has ended its period of secrecy to unveil an optical engine targeted at systems with demanding data input-output requirements.

Dan HardingThe start-up claims its optical engine delivers unmatched bandwidth density measured in terabits per millimetre (T/mm) and power consumption performance metrics.

“In the timeframe of founding the company [in 2020], it became obvious that the solution space [for our product] was machine learning-artificial intelligence,” says Dan Harding, the CEO of Nubis.

Click to read more ...

Thursday
Nov232017

ON2020 rallies industry to address networking concerns 

Peter Winzer highlights one particular slide, part of the operator-findings presentation, to explain the purpose of the Optical Networks 2020 (ON2020) group.

Source: ON2020

The slide shows how router-blade client interfaces are scaling at 40% annually compared to the 20% growth rate of general single-wavelength interfaces (see chart).

Extrapolating the trend to 2024, router blades will support 20 terabits while client interfaces will only be at one terabit. Each blade will thus require 20 one-terabit Ethernet interfaces. “That is science fiction if you go off today’s technology,” says Winzer, director of optical transmission subsystems research at Nokia Bell Labs and a member of the ON2020 steering committee.

This is where ON2020 comes in, he says, to flag up such disparities and focus industry efforts so they are addressed.

Click to read more ...

Friday
Dec182015

SDM and MIMO: An interview with Bell Labs  

Bell Labs is claiming an industry first in demonstrating the recovery in real time of multiple signals sent over spatial-division multiplexed fibre. Gazettabyte spoke to two members of the research team to understand more.

 

Part 2: The capacity crunch and the role of SDM

The argument for spatial-division multiplexing (SDM) - the sending of optical signals down parallel fibre paths, whether multiple modes, cores or fibres - is the coming ‘capacity crunch’. The information-carrying capacity limit of fibre, for so long described as limitless, is being approached due to the continual yearly high growth in IP traffic. But if there is a looming capacity crunch, why are we not hearing about it from the world’s leading telcos? 

Click to read more ...

Thursday
Apr022015

Heading off the capacity crunch

Feature - Part 1: Capacity limits and remedies

Improving optical transmission capacity to keep pace with the growth in IP traffic is getting trickier. 

Engineers are being taxed in the design decisions they must make to support a growing list of speeds and data modulation schemes. There is also a fissure emerging in the equipment and components needed to address the diverging needs of long-haul and metro networks. As a result, far greater flexibility is needed, with designers looking to elastic or flexible optical networking where data rates and reach can be adapted as required.

Figure 1: The green line is the non-linear Shannon limit, above which transmission is not possible. The chart shows how more bits can be sent in a 50 GHz channel as the optical signal to noise ratio (OSNR) is increased. The blue dots closest to the green line represent the performance of the WaveLogic 3, Ciena's latest DSP-ASIC family. Source: Ciena.

But perhaps the biggest challenge is only just looming. Because optical networking engineers have been so successful in squeezing information down a fibre, their scope to send additional data in future is diminishing. Simply put, it is becoming harder to put more information on the fibre as the Shannon limit, as defined by information theory, is approached.

Click to read more ...

Wednesday
Feb202013

Space-division multiplexing: the final frontier

System vendors continue to trumpet their achievements in long-haul optical transmission speeds and overall data carried over fibre. 

Alcatel-Lucent announced earlier this month that France Telecom-Orange is using the industry's first 400 Gigabit link, connecting Paris and Lyon, while Infinera has detailed a trial demonstrating 8 Terabit-per-second (Tbps) of capacity over 1,175km and using 500 Gigabit-per-second (Gbps) super-channels. 

 

"Integration always comes at the cost of crosstalk"

Peter Winzer, Bell Labs

 

 

 

 

 

Click to read more ...