OFC 2014 product round-up - Final part
Wednesday, April 2, 2014 at 12:11PM
Roy Rubenstein in CFP4, CLR4, ER4-LIte, OFC 2014, OpenOptics MSA, PSM4, QSFP28, VCSELs, active optical cable, optical engines

Part 2: Client-side technologies

The industry is moving at a clip to fill the void in 100 Gig IEEE standards for 100m to 2km links. Until now, the IEEE 10km 100GBASE-LR4 and the 10x10 MSA have been the interfaces used to address such spans.

But responding to data centre operators, optical players are busy developing less costly, mid-reach MSAs, as was evident at the OFC exhibition and conference, held in San Francisco in March. 

Meanwhile, existing IEEE 100 Gigabit standards are skipping to the most compact CFP4 and QSFP28 form factors. The -LR4 standard was first announced in a CFP in 2010, and moved to the CFP2, half the size of the CFP, in 2013. Now, several companies have detailed CFP4 -LR4 products, while Source Photonics has gone one better, announcing the standard in a QSFP28.

The CFP4 is half the size of the CFP2, while the QSFP28 is marginally smaller than the CFP4 but has a lower power consumption: 3.5W compared to the CFP4's 6W.

 

Timeline of some pluggable announcements at recent OFCs. Source: Gazettabyte


The mid-reach landscape

Several interfaces for mid-reach interconnect were detailed at OFC. And since the show, two MSAs have been detailed: the CWDM4 and the CLR4 Alliance.

At OFC, the OpenOptics MSA backed by Mellanox Technologies and Ranovus, was announced.  Skorpios Technologies demoed its CLR4 module that has since become the CLR4 Alliance. And vendors discussed the Parallel Single Mode (PSM4) initiative that was first detailed in January.

Switch vendor Mellanox Technologies and module start-up Ranovus announced the OpenOptics MSA at OFC. The QSFP-based MSA uses a single-mode fibre and WDM transmission around 1550nm to address data centre links up to 2km.

Saeid Aramideh of Ranovus says that the MSA using its laser and silicon photonics technologies will deliver significant cost, power and size advantages {add link}. "But the 1550nm WDM connection is open to any technology," says Aramideh, chief marketing and sales officer at Ranovus. "It does not have to be silicon photonics."

The first MSA product, a 100 Gig QSFP28, uses 4x25 Gig channels. "The channel spacing for the MSA is flexible to be 50GHz or more," says Aramideh. The MSA is scalable to 400 Gig and greater rates. The 100 Gig QSFP28 technology is several months away from sampling.

Skorpios Technologies demonstrated its QSFP28-CLR4 transceiver although the details of the MSA have yet to be detailed. Skorpios is a silicon photonics player and uses heterogenous integration where the lasers, modulators, detectors and optical multiplexer and de-multiplexer are monolithically integrated on one chip. 

The PSM4 MSA  is another initiative designed to tackle the gap between IEEE short and long reach standards. Backed by players such as Avago Technologies, Brocade, JDSU, Luxtera, Oclaro, and Panduit, the 100 Gig standard is defined to operate in the 1295-1325nm spectral window and will have a reach of at least 500m.

ColorChip demonstrated a 100 Gig (4x25 Gig) QSFP28 with a 2km reach at the show. The design uses uncooled directly modulated lasers to achieve the 3.5W power consumption. Since the show Colorchip is one of the member companies backing the CLR4 Alliance and the demoed QSFP matches the first details of the new MSA's spec.


100GBASE-LR4 moves to CFP4 and QSFP28

The IEEE 100GBASE-LR4 standard is transitioning to the smallest modules. At OFC, vendors detailed the first CFP4s while Source Photonics announced the -LR4 in a QSFP28.

Source Photonics says its transceiver consumes 3.5W. The QSFP28 form factor achieves up to a fourfold increase in face plate density compared to the CFP2: up to 48 modules compared to a dozen CFP2 modules, says the company, which expects first QSFP28 -LR4 samples in mid-2014.

Meanwhile, Avago Technologies, Finisar, Fujitsu Optical Components and JDSU all detailed their first CFP4  -LR4 modules.

JDSU says that when it developed the optics for its CFP2 -LR4, it was already eyeing the transition to the CFP4 and QSFP28 form factors. To achieve the -LR4 spec in the 6W CFP4, a key focus are the clock data recover (CDR), driver and trans-impedance amplifier chips. "A decent amount of the power consumption is wrapped up in the ICs that do the CDR and a variety of the digital functions behind the photonics," says Brandon Collings, JDSU's CTO for communications and commercial optical products.  JDSU expects general availability of its CFP4 -LR4 later this year.

Finisar's -LR4 is its second CFP4 product; at ECOC 2013 it showcased a 100m, 100GBASE-SR4 CFP4. Finisar says its -LR4 uses distributed feedback (DFB) lasers and consumes 4.5W, well within the CFP4's 6W power profile. At OFC, the CFP4 was demonstrated working with CFP2 and CFP -LR4 modules. Finisar's CFP4 will sample later this year.

Avago announced availability of its -LR4 transmit optical subassembly (TOSA) and receive optical subassembly (ROSA) products for the CFP4, along with its CFP4 module which it says will be available next year.  Fujitsu Optical Components also used OFC to demo its CFP4 -LR4.


40km Extended Reach Lite

Oclaro and Finisar detailed a tweak to the 100 Gig Extended Reach standard: the 40km, 100GBASE-ER4.

The IEEE standard uses a power-hungry semiconductor optical amplifier (SOA) prior to the PIN photodetector to achieve 40km. The module vendors have proposed replacing the SOA and PIN with an avalanche photo diode (APD) and external forward error correction to reduce the power consumption while maintaining the optical link budget. The changed spec is dubbed 100GBASE-ER4 Lite.

"Trying to achieve the power envelopes required for the CFP4 and QSFP28 using SOAs is going to be too hard," says Kevin Granucci, vice president of strategy and marketing at Oclaro.

Oclaro demonstrated a ER4-Lite in a CFP2. The module supports 100 Gigabit Ethernet and the Optical Transport Network (OTN) OTU-4 rates, and consumes less than 9W. "We are using the CFP2 as the first proof-of-concept," says Granucci. "For the 6W CFP4 and the 3.5W QSFP28, we think this is the only solution available."  

At OFC Finisar demonstrated the link's feasibility, which it refers to as ER4f, using four 28 Gig lasers and four 28 Gig APDs.

Oclaro says it is seeing customer interest in the ER4 Lite, and points out that there are many 10 Gig 40km links deployed, especially in China. "The ER4 Lite will provide an update path to 100 Gig," says Granucci.


VCSELs: serial 40 Gig and the 400 Gig CDFP

Finisar showcased a VCSEL operating at 40 Gig at OFC. State-of-the-art VCSEL interfaces run up to 28 Gig. Finisar's VCSEL demonstration was to show the commercial viability of higher-speed VCSELs for single channel or parallel-array applications. "We believe that VCSELs have not run out of steam," says Rafik Ward, vice president of marketing at Finisar. The 40 Gig VCSEL demonstration used non-return-to-zero (NRZ) signalling, "no higher-order modulation is being used", says Ward.

IBM T.J.Watson Research Center has published an IEEE paper with Finisar involving a 56Gbps optical link based on an 850nm VCSEL.

Finisar also demonstrated an CDFP-based active optical cable. The CDFP is a 400 Gig MSA that uses 16 x 25 Gig VCSEL channels in each direction. Such an interface will address routing, high-performance computing and proprietary interface requirements, says Finisar. The demonstration showcased the technology; Finisar has yet to announce interface products or reaches.


Short reach 100G and 4x16 Gig Fibre QSFPs

Avago Technologies announced a 100GBASE-SR4 implemented using the QSFP28. Avago's I Hsing Tan, segment marketing manager for Ethernet and storage optical transceivers, says there has been a significant ramp in data centre demand for the 40GBASE-SR4 QSFP+ in the last year. "Moving to the next generation, the data centre operator would like to keep the same [switch] density as the QSFP+, and the QSFP28 MSA offers the same form factor," he says.

The QSFP28 differs from the QSFP+ is that its electrical connector is upgraded to handle 28 Gigabit-per-lane data rates. Avago says the -SR4 module will be generally available next year.

Avago also announced a 4x16 Gigabit Fibre Channel QSFP+ transceiver. The industry is transitioning from 8 to 16 Gig Fibre Channel, says Avago, and this will be followed by 32 Gig serial and 4x32 Gig Fibre Channel modules.

The company has announced a 4x16 Gig QSFP+ to continue the increase in platform channel density while the industry transitions from 16 to 32 Gig Fibre Channel. "This solution is going to provide the switch vendor a 3x increase in density at half the power dissipation per channel for 16 Gig Fibre Channel, before the 32 bit Fibre Channel come to maturity in three to five years," says Tan.

Avago has just announced that it has shipped over half a million QSFP+ modules.

Optical engines

TE Connectivity announced its 25 Gig-per-channel optical engine technology. The Coolbit optical engine will be included in four TE Connectivity products planned for this year: 100 Gig QSFP28 active optical cables (AOCs), 100 Gig QSFP28 transceivers, 300 Gig mid-board optical modules, and 400 Gig CDFP AOCs.

Meanwhile, Avago's MiniPod and MicroPod optical engine products now have a reach of 550m when coupled with Corning's ClearCurve OM4 fibre.

"This allows customers in the data centre to go a little bit further and not have to go to single-mode fibre," says Sharon Hall, product line manager for embedded optics at Avago.

 

For Part 1, click here

 

Further reading:-

TE Connectivity White Paper: End-to-end Communications with Fiber Optic Technologies, click here

LightCounting: Reflections on OFC 2014: The industry is approaching a critical junction, click here

Ovum at OFC 2014, click here

LightWave OFC 2014 Podcast, click here

Ethernet Alliance Blog: OFC 2014 show and best in class,  click here

Article originally appeared on Gazettabyte (https://www.gazettabyte.com/).
See website for complete article licensing information.